Current Methods for Objectively Measuring Accommodation

Sanjeev Kasthurirangan, PhD

Associate Research Fellow Clinical R&D, Abbott Medical Optics

Parts of the talk

Background

- Near Triad
- Lenticular accommodative changes
- Stimulus considerations
- Dynamic Accommodative Response
- Instruments for Objectively Measuring Accommodation
 - Refractive Power Measurement
 - Biometric Measurement
- Draft ANSI and ISO requirements
- Summary

Accommodative Process - Near Triad

Near viewing involves simultaneous convergence, accommodation and pupil constriction

Dynamic Measurement of the Near Triad with a PowerRefractor

Video courtesy Dr. Adrian Glasser

Accommodative Process – Lenticular Changes

 Natural accommodation involves the following major lenticular changes:

Refractive changes

- Increase in refractive power, manifesting as 'myopic refractive change'
- Increase in negative spherical aberration

Biometric changes

- Increase in surface curvatures
- Increase in thickness, also leading to reduction in anterior chamber depth
- Decrease in lens diameter
- These attributes can be targeted for objective accommodation measurement.

"Charman WN. The eye in focus: accommodation and presbyopia. Clin Exp Optom. 2008 May;91(3):207-25"

Accommodation Measurement – Stimulus Considerations

- Accommodation is mainly driven by blur and proximal awareness (i.e. convergence driven)
- Binocular, real space viewing would best stimulate accommodation
- Key considerations:
 - High contrast fixation target
 - Free space viewing is preferable over optically presented target
 - Appropriate instructions to encourage subject participation
 - Dim room lighting to maintain large pupil needed to obtain measurements with most instruments

Dynamic Accommodative Response

 Accommodation typically exhibits fluctuations

Variations in subject attention may increase the fluctuations

 Dynamic measurements would offer a greater insight into the accommodative response

Dynamic accommodation measurements with a PowerRefractor for different stimulus magnitudes

Measurement of Refractive Power Change

Disclaimer:

Only a few instruments as representative examples are provided.

Autorefractors

- Accommodation measured as myopic refractive change
- WAM-5500 & PowerRef3 autorefractors have binocular open field of view.
- Both offer dynamic measurement of refraction and pupil size
 - o WAM5500: 5 Hz; PowerRefractor: 25 Hz
- Proprietary measurement principles
 - o WAM5500: Ring projected through 2.3 mm pupil
 - PowerRefractor: light distribution across full pupil diameter
- Reflections from IOLs and small pupils can impede measurements.

WAM-5500 (AIT Industries)
Green et al.J Rehabil Res Dev. 2010;47(3):183-99.

PowerRef3 (PlusOptix) http://www.plusoptix.eu

Wavefront Aberrometers

- Refraction derived from wavefront aberration measurements
- Monocular open field of view (iTrace aberrometer), internal fixation target (IRX3 aberrometers) or custom target system (WASCA)
- Choice of pupil diameter and advanced analysis, for example, quantification of changes in spherical aberration
- IOL reflections and edge artifacts along with small pupils can impede measurements.

http://www.traceytechnologies.com

IRX3 http://www.imagine-eyes.com

COAS or WASCA*

http://www.wfsci.com/

* Not commercially available

Measurement of Biometric Change

Disclaimer:

Only a few instruments as representative examples are provided.

Ultrasound (A-scan or UBM)

- A-scan axial biometry or Ultrasound Biomicroscopy for 2-D imaging of the anterior segment of the eye.
- Anterior chamber depth (ACD), lens thickness measurements at 30-50 µm resolution.
- Advantage of imaging behind the iris.
- Fixation target presented to the contralateral non-measured eye as the ultrasound probe would occlude the measured eye.
- Longer measurement duration, user skill level and subject discomfort could impact measurements.
- May not be suitable for aIOLs designed to cause changes in surface curvature.

VuMAx (Sonomed) http://sonomedescalon.com

Artemis-2 (Ultralink)
http://www.arcscan.com

OTI Scan (Optos) http://www.optos.com

Scheimpflug Photography

- Photographic technique with oblique viewing to obtain in-focus image of the anterior segment of the eye
 - Non-contact biometry technique
- ACD measurement is available for accommodation evaluation.
- Advanced analysis (eg: lens surface curvature) would require correction of optical distortions inherent in the technique.
- Internal fixation target (eg.: red blinking LED) may not adequately stimulate accommodation.

Scheimpflug Imaging Principle
http://medicaldictionary.thefreedictionary.com/Scheimpf
lug+photography

Pentacam (Oculus)
http://www.pentacam.com

Galilei (Ziemer)
http://www.ziemergroup.com

Optical Biometry

- Interferometry based techniques provide resolution within 10 μm.
 - Non-contact biometry technique
- Axial biometry or full anterior segment imaging is available.
- ACD measurement is available for accommodation evaluation. Lenstar offers lens thickness measurement also.
- Internal fixation targets may not adequately stimulate accommodation.

IOLMaster (Zeiss)
http://www.meditec.zeiss.com/

Lenstar (Haag-Streit)
http://www.haag-streit-usa.com/

Visante OCT (Zeiss)
http://www.meditec.zeiss.com/

Draft Guidances for Objective Accommodation

ISO draft guidance

- Section 6.2.3 Additional requirements for accommodating IOLs
 - "...that the accommodating IOL provides an average of at least 1 D of objective accommodation".
- Annex E (Informative) Clinical Tests
 - o "At least one objective measure of accommodation by refractive change"
 - o "A measurement of a biometric change with an AIOL does not directly provide an indication of the extent of the accommodative refractive change, but may be useful to validate the intended mode of action"

ANSI draft guidance

- Section 10.2 Clinical investigation plan requires
 - o "...at least one diopter of objectively measured accommodation"
- Annex B (informative) Clinical Investigation mentions
 - "...at least one diopter of objectively-measured accommodative amplitude at 4-6 months in the Phase I AIOL subject group over the control group"

Summary

- A variety of instruments for objectively measuring accommodation are available
- Measurement of accommodation in an aIOL in a clinical study requires careful test methodology to
 - Encourage subjective effort to accommodate including use of a fixation target that will best stimulate accommodation
 - Overcome challenges arising from small pupils, convergence and IOL reflections
 - Choosing an instrument that would readily provide information to best evaluate accommodative performance of a particular aIOL design
- Both ISO and ANSI draft guidance for accommodating IOLs mention one diopter of objectively measured accommodation to confirm aIOL effectiveness.

